Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling
نویسندگان
چکیده
Workload consolidation is usually performed in datacenters to improve server utilization for higher energy efficiency. One of the key issues in workload consolidation is the contention for shared resources. Dynamic voltage and frequency scaling (DVFS) of CPU is another effective technique that has been widely used to trade performance for power reduction. We have found that the degree of resource contention of a system affects its performance sensitivity to CPU frequency. Without detailed architecture level information, the complex relationship between contention, frequency and performance cannot be retrieved analytically. In this paper, we apply machine learning techniques to construct a model for chip multiprocessor (CMP) Performance Estimation under Fixed workload Scheduling (PEFS). It quantifies performance degradation of target process caused by resource contention and frequency scaling for current CMP workload with the assumption of a fixed task mapping. The model is further generalized for performance prediction with task migration (PPTM), which predicts the performance degradation after potential intra-processor task migration. Both models are tested on an SMT-enabled chip multi-processor with 10∼20% estimation error on average. Experimental results show that our PEFS model can keep the performance of those bottleneck tasks much closer to the performance threshold than all other techniques, which leads to almost no performance violation while achieves more energy savings, and task migration guided by our PPTM model produces 4%∼9% higher performance than conventional task migration guided by last level cache miss.
منابع مشابه
Green Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملEnergy-Aware Scheduling of Real-Time Heterogeneous Multiprocessor Systems-on-a-Chip
In this paper an off line energy-aware algorithm is presented for the case of heterogeneous multiprocessor systems-on-a-chip. Threads are divided in precedence-related tasks that should execute on specific processors. A voltage scaling technique is used to reduce the power demand of the processors, each of which operates at a single frequency.
متن کاملEnergy and Synchronization-Aware Mapping of Real-Time Tasks on Asymmetric Multicore Platforms
Efficient task mapping plays a crucial role in saving energy in asymmetric multiprocessor platforms. This paper considers the problem of energy-aware static mapping of periodic realtime dependent tasks sharing resources on asymmetric multi/many-core embedded systems. The paper extends an existing synchronization-aware bin-packing (BP) variant when the full-chip dynamic voltage and frequency sca...
متن کاملCommunication and migration energy aware task mapping for reliable multiprocessor systems
Heterogeneous multiprocessor systems-on-chip (MPSoCs) are emerging as a promising solution in deep sub-micron technology nodes to satisfy design performance and power requirements. However, shrinking transistor geometry and aggressive voltage scaling are negatively impacting the dependability of these MPSoCs by increasing the chances of failures. This paper proposes an offline (design-time) tas...
متن کاملEnergy Efficient Task Allocation and Scheduling in Distributed Homogeneous Multiprocessor Systems
With the advent of semi conductor technology, the development of more complex embedded real time applications is made possible today. This accelerates the development and support for multiprocessor based systems. The paper presents the development of “a power-aware real time embedded system for temperature monitoring and control in safety critical applications”. The main objective of the work i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Low Power Electronics
دوره 11 شماره
صفحات -
تاریخ انتشار 2015